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pysarpu

[image: _images/pysarpu.svg]
 [https://pypi.python.org/pypi/pysarpu][image: _images/pysarpu1.svg]
 [https://travis-ci.com/ocoudray/pysarpu][image: Documentation Status]
 [https://pysarpu.readthedocs.io/en/latest/?version=latest]PU learning under SAR assumption with unknown propensity. Implementation of the general SAR-EM algorithm.


	Free software: MIT license


	Documentation: https://pysarpu.readthedocs.io.





Features


	TODO






Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.





            

          

      

      

    

  

    
      
          
            
  
Installation


Stable release

To install pysarpu, run this command in your terminal:

$ pip install pysarpu





This is the preferred method to install pysarpu, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.



From sources

The sources for pysarpu can be downloaded from the Github repo [https://github.com/ocoudray/pysarpu].

You can either clone the public repository:

$ git clone git://github.com/ocoudray/pysarpu





Or download the tarball [https://github.com/ocoudray/pysarpu/tarball/master]:

$ curl -OJL https://github.com/ocoudray/pysarpu/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install









            

          

      

      

    

  

    
      
          
            
  
Usage


Import

To use pysarpu in a project:

import pysarpu





PU learning classification model can be imported as follows:

from pysarpu import PU





The definition of a PU model requires the specification of a classification model and of a propensity model. Implementations can be found in sub-modules pysarpu.classification and pysarpu.propensity:

from pysarpu.classification import LinearLogisticRegression, LinearDiscriminantClassifier
from pysarpu.propensity import LogisticPropensity, LogProbitPropensity, GumbelPropensity









            

          

      

      

    

  

    
      
          
            
  
Modules


PU learning model


	
class PUClassifier(cmodel, emodel, da=False)

	PU learning classification model under unknown propensity.
This model works by specifying a model on the classification and on the propensity and estimates parameters using EM algorithm (SAR-EM, Bekker et al.)


	Parameters

	
	cmodel (pysarpu.classification.Classifier) – an instance of class :class: Classifier <pysarpu.classification.Classifier> representing the classification model. This package includes two types of classification models: logistic regression (accessible through pysarpu.classification.LinearLogisticRegression) and linear discriminant analysis (accessible through pysarpu.classification.LinearDiscriminantClassifier)


	emodel (pysarpu.propensity.Propensity) – an instance of class pysarpu.propensity.Propensity representing the propensity model. This package includes multiple pre-implemented propensity models: logistic propensity (pysarpu.propensity.LogisticPropensity), log-normal propensity (pysarpu.propensity.LogProbitPropensity) and Gumbel propensity (pysarpu.propensity.GumbelPropensity)


	da (bool, optional) – whether the classification model is a discriminant analysis type model (True) or not (False). Indeed, the likelihood maximized is not the same in these two settings. Default: False.






	Returns

	Return an instance of PU learning model (not yet initialized).



	Return type

	pysarpu.PUClassifier






	
initialization(Xc, Xe, Y, w=1.0)

	Initialization of parameters for both classification and propensity models before running EM algorithm. The parameters of each models are initialized following their respective method: see initialization methods for cmodel and emodel.


	Parameters

	
	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification. The parameters of cmodel will be initialized in agreement with the dimension of the entry data \(d_1\).


	Xe (numpy.array of shape \((n,d_2)\)) – covariate matrix for propensity. The parameters of emodel will be initialized in agreement with the dimension of the entry data \(d_2\).


	Y (numpy.array vector of size \(n\).) – observed labels. Only used in the computation of the initial log-likelihood.






	Returns

	None










	
e(Xe)

	Propensity function using the current parameters of propensity model emodel.


	Parameters

	Xe (numpy.array of shape \((n,d_2)\)) – covariate matrix for propensity.



	Returns

	vector of propensity scores.



	Return type

	numpy.array of size \(n\)










	
loge(Xe)

	Logarithm of propensity function using the current parameters of propensity model emodel.


	Parameters

	Xe (numpy.array of shape \((n,d_2)\)) – covariate matrix for propensity.



	Returns

	vector of log-propensity scores.



	Return type

	numpy.array of size \(n\)










	
predict_cproba(Xc)

	Class probability predictions using the parameters of the classification model.


	Parameters

	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.



	Returns

	posterior class probabilities.



	Return type

	numpy.array vector of size \(n\)










	
predict_clogproba(Xc)

	Class log-probability predictions using the parameters of the classification model.


	Parameters

	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.



	Returns

	posterior class log-probabilities.



	Return type

	numpy.array vector of size \(n\)










	
predict_c(Xc, threshold=0.5)

	Class binary predictions using the parameters of the classification model.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	threshold (float, optional (in \([0,1]\))) – decision threshold defining the decision rule.






	Returns

	class predictions.



	Return type

	numpy.array binary vector of size \(n\)










	
predict_proba(Xc, Xe)

	Label probability predictions based on the classification model cmodel and the propensity model emodel. Note that this is different from method predict_cproba which returns class probabilities instead.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.






	Returns

	posterior label probabilities.



	Return type

	numpy.array vector of size \(n\)










	
predict_logproba(Xc, Xe)

	Label log-probability predictions based on the classification model cmodel and the propensity model emodel. Note that this is different from method predict_clogproba which returns class log-probabilities instead.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.






	Returns

	posterior label log-probabilities.



	Return type

	numpy.array vector of size \(n\)










	
predict(Xc, Xe, threshold=0.5)

	Label binary predictions based on the classification model cmodel and the propensity model emodel. Note that this is different from method predict_c which returns class predictions instead.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.


	threshold (float, optional (in \([0,1]\))) – decision threshold defining the decision rule.






	Returns

	label binary predictions.



	Return type

	numpy.array binary vector of size \(n\)










	
loglikelihood(Xc, Xe, Y, w=1.0)

	Log-likelihood function given the current parameters of classification and propensity models. Note that the funciton returns the mean of individual dlog-likelihoods (instead of the usual sum).


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.


	Y (numpy.array vector of size \(n\).) – observed labels. Only used in the computation of the initial log-likelihood.


	w (either float (1., default) or numpy.array of size \(n\), optional.) – individual weights (experimental, not tested). Apply weights to observations in the computation of the likelihood.






	Returns

	log-likelihood.



	Return type

	float










	
expectation(Xc, Xe, Y)

	Compute the expectation step of EM algorithm, return the probabilities for every instance to be of positive class given the observed labels.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.


	Y (numpy.array vector of size \(n\).) – observed labels. Only used in the computation of the initial log-likelihood.






	Returns

	posterior probabilities



	Return type

	np.array vector of size \(n\)










	
maximisation(Xc, Xe, Y, gamma, w=1.0, warm_start=True, balance=False)

	Compute the maximisation step of EM algorithm, update the model parameters in both classification and propensity models.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.


	Y (numpy.array vector of size \(n\).) – observed labels. Only used in the computation of the initial log-likelihood.


	gamma (numpy.array of size \(n\)) – posterior probabilities obtained in the expectation step.


	w (either float (1., default) or numpy.array of size \(n\), optional.) – individual weights (experimental, not tested). Apply weights to observations in the computation of the likelihood.






	Returns

	None










	
fit(Xc, Xe, Y, w=1.0, tol=1e-06, max_iter=10000.0, warm_start=False, balance=False, n_init=20, iter_init=20)

	Estimation of PU learning model parameters (classifier and propensity) through EM algorithm. Multiple random initialization are considered and trained over a few iterations. Then, only the one achieving the best log-likelihood is considered and trained until convergence.


	Parameters

	
	Xc (numpy.array with shape \((n, d_1)\).) – covariate matrix for classification.


	Xe (numpy.array with shape \((n, d_2)\).) – covariate matrix for propensity.


	Y (numpy.array vector of size \(n\).) – observed labels. Only used in the computation of the initial log-likelihood.


	w (either float (1., default) or numpy.array of size \(n\), optional.) – individual weights (experimental, not tested). Apply weights to observations in the computation of the likelihood.


	tol (float, optional) – tolerance parameter. Once the increase in the log-likelihood is below tol, the algorithm stops (default 1e-6).


	max_iter (int, optional) – maximum number of iterations (default: 1e4)


	warm_start (bool, optional) – indicates whether current parameters can be used for initialization (True) or if they should be re-initialized before estimation (default False).


	balance (bool, optional) – re-balance weights when fitting the propensity model in the maximization (experimental, potentially interesting in highly unbalanced situations). Default: False.


	n_init (int, optional) – number of initialization to consider in the Small EM initialization strategy (default: n_init=20)


	iter_init (int, optional) – maximum number of iterations to consider for each initialization (default: 20).






	Returns

	None










	
save(path)

	Saving PU learning model with current parameters as a binary file (rely on pickle library).


	Parameters

	path (str) – path at which the model should be saved.



	Returns

	None















Classification models

Two classification models can be found in submodule pysarpu.classification:


	a Linear Logistic Regression model


	a Linear Discriminant Analysis model




These two models inherit from the general class sklearn.classification.Classifier.


	
class LinearLogisticRegression

	Linear logistic regression model for classification.


	Parameters

	params (numpy.array vector of size \(d_1+1\)) – current parameter vector.






	
initialization(Xc, w=1.0)

	Initialization of the parameters of the model. Initial parameters are chosen randomly and the dimension of parameter vector is the dimension of the covariates + 1 (intercept).


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	None










	
fit(Xc, gamma, w=1.0, warm_start=True)

	Estimation of the parameters of the model given the covariates and the observed output. Note that the output does not need to be binary classes, it can consist in probability values.


	Parameters

	
	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.


	gamma (numpy.array of size \(n\)) – posterior probabilities obtained in the expectation step.


	w (either float (1., default) or numpy.array of size \(n\), optional.) – individual weights (experimental, not tested). Apply weights to observations in the computation of the likelihood.


	warm_start (bool, optional) – indicates whether current parameters can be used for initialization (True) or if they should be re-initialized before estimation (default False).






	Returns

	None










	
eta(Xc)

	Class probability predictions given the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	class probabilities.



	Return type

	numpy.array vector of size \(n\)










	
logeta(Xc)

	Class log-probability predictions given the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	class log-probabilities.



	Return type

	numpy.array vector of size \(n\)














	
class LinearDiscriminantClassifier

	Linear Discriminant Analysis model for classification.


	Parameters

	params (dict) – current parameters: pi is the class prior, mu_0 the mean vector for negative class, mu_1 the mean vector for positive class, Sigma the covariance matrix.






	
initialization(Xc, w=1.0)

	Initialization of the parameters of the model:


	the class prior pi is randomly and uniformly drawn in \([0,1]\)


	the mean vectors mu_0 and mu_1 are drawn as standardized gaussian variables


	the covariance matrix Sigma is initialized as the empirical covariance matrix of the whole data set.





	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.










	
fit(Xc, gamma, w=1.0, warm_start=True)

	Estimation of the parameters of the model given the covariates and the observed output. Note that the output does not need to be binary classes, it can consist in probability values.


	Parameters

	
	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.


	gamma (numpy.array of size \(n\)) – posterior probabilities obtained in the expectation step.


	w (either float (1., default) or numpy.array of size \(n\), optional.) – individual weights (experimental, not tested). Apply weights to observations in the computation of the likelihood.


	warm_start (bool, optional) – indicates whether current parameters can be used for initialization (True) or if they should be re-initialized before estimation (default False). Not important here as the maximization is straightforward and does not depend on the initialization.






	Returns

	None










	
eta(Xc)

	Class probability predictions given the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	class probabilities.



	Return type

	numpy.array vector of size \(n\)










	
logeta(Xc)

	Class log-probability predictions given the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	class log-probabilities.



	Return type

	numpy.array vector of size \(n\)










	
pdf_pos(Xc)

	Individual likelihood for the positive distribution \(\mathbb{P}(x \vert Z=1)\) and for the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	individual likelihood values.



	Return type

	numpy.array vector of size \(n\)










	
pdf_neg(Xc)

	Individual likelihood for the positive distribution \(\mathbb{P}(x \vert Z=0)\) and for the current parameters.


	Parameters

	Xc (numpy.array of shape \((n,d_1)\)) – covariate matrix for classification.



	Returns

	individual likelihood values.



	Return type

	numpy.array vector of size \(n\)















Propensity models

Three propensity models are provided in submodule pysarpu.propensity:


	a Logistic Regression model


	a logistic function with log-normal link function


	a logistic function with Weibull link function





	
class LogisticPropensity

	Logistic Propensity : the feature vector Xe is assumed to contain an intercept as its first column






	
class LogProbitPropensity

	




	
class GumbelPropensity

	







            

          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/ocoudray/pysarpu/issues.

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.






Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.



Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.



Write Documentation

pysarpu could always use more documentation, whether as part of the
official pysarpu docs, in docstrings, or even on the web in blog posts,
articles, and such.



Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ocoudray/pysarpu/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions
are welcome :)







Get Started!

Ready to contribute? Here’s how to set up pysarpu for local development.


	Fork the pysarpu repo on GitHub.


	Clone your fork locally:

$ git clone git@github.com:your_name_here/pysarpu.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pysarpu
$ cd pysarpu/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 pysarpu tests
$ python setup.py test or pytest
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.






Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.


	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/ocoudray/pysarpu/pull_requests
and make sure that the tests pass for all supported Python versions.






Tips

To run a subset of tests:

$ python -m unittest tests.test_pysarpu







Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags





Travis will then deploy to PyPI if tests pass.





            

          

      

      

    

  

    
      
          
            
  
Credits


Development Lead


	Olivier COUDRAY <olivier.coudray.15@polytechnique.org>






Contributors

None yet. Why not be the first?





            

          

      

      

    

  

    
      
          
            
  
History


0.1.0 (2022-10-07)


	First release on PyPI.
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